/ 首页 / 学术交流 / 正文

报告题目:Macroscopic modeling and simulations for two-phase flows with moving contact lines

报告时间:2024年05月30日(周四) 14:00

报告地点:3号楼307会议室

报告人:许现民  研究员

数学与系统科学研究院

邀请人:土井正男 研究员

 
简介:许现民2009年博士毕业于北京大学,曾先后赴英国牛津大学、香港科技大学和德国亚琛工业大学进行长期学术访问或博士后研究。现任中国科学院数学与系统科学研究院研究员、博士生导师。其主要研究兴趣是复杂多尺度多物理问题的建模、分析和计算,研究内容包括非线性弹性材料破坏、粗糙界面上浸润以及曲面上偏微分方程数值求解等问题。迄今共发表学术论文40多篇,其中大多发表于应用和计算数学及相关领域的一流期刊上,包括Arch. Rational Mech. Anal., SIAM J. Numer. Anal.,SIAM J. Sci. Comput., Numer. Math., J. Fluid Mech., J. Comput. Phys.等。目前担任Int. J. Numer. Anal. Mod. 期刊编委,曾受邀在第二十届流体力学数值方法研讨会上做大会报告。
 
摘要:Modeling and simulating two-phase flows with moving contact lines pose significant challenges in fluid dynamics due to the problem's multi-scale and multi-physics nature. A continuum model must consider the nanoscale slip near a contact line. While there are numerous microscopic models available, applying them to macroscopic two-phase flow problems is extremely difficult, especially when dealing with rough or chemically inhomogeneous solid boundaries. In this presentation, I will discuss recent progress in modeling and simulations for complex moving contact line problems. Specifically, I will demonstrate the effectiveness of utilizing the Onsager variational principle as a powerful approximation tool. We derive coarse-grained boundary conditions for moving contact line problems, both with and without contact angle hysteresis. These boundary conditions serve as the foundation for developing efficient numerical methods to solve macroscopic two-phase flow problems.

上一篇: 可控自由基聚合放大用于生物分子检测
下一篇: AFEPack: A C++ Library for Numerical Solutions of PDEs