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A B S T R A C T

Hematoxylin and eosin (H&E) staining is a crucial technique for diagnosing glioma, allowing direct observation
of tissue structures. However, the H&E staining workflow necessitates intricate processing, specialized laboratory
infrastructures, and specialist pathologists, rendering it expensive, labor-intensive, and time-consuming. In view
of these considerations, we combine the deep learning method and hyperspectral imaging technique, aiming at
accurately and rapidly converting the hyperspectral images into virtual H&E staining images. The method
overcomes the limitations of H&E staining by capturing tissue information at different wavelengths, providing
comprehensive and detailed tissue composition information as the realistic H&E staining. In comparison with
various generator structures, the Unet exhibits substantial overall advantages, as evidenced by a mean structure
similarity index measure (SSIM) of 0.7731 and a peak signal-to-noise ratio (PSNR) of 23.3120, as well as the
shortest training and inference time. A comprehensive software system for virtual H&E staining, which integrates
CCD control, microscope control, and virtual H&E staining technology, is developed to facilitate fast intra-
operative imaging, promote disease diagnosis, and accelerate the development of medical automation. The
platform reconstructs large-scale virtual H&E staining images of gliomas at a high speed of 3.81 mm2/s. This
innovative approach will pave the way for a novel, expedited route in histological staining.

1. Introduction

Glioma is the most common primary intracranial tumor in adults,
accounting for 81 % of malignant brain tumors. It occurs in any part of
the central nervous system and has a high mortality and incidence rate.
Currently, the principal imaging examinations for gliomas include
computed tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET) [1], which can reveal brain
anatomical features, tumor lesion location, size, surrounding edema,
and blood-brain barrier disruption. Other methods such as fluorescence
[2] and Raman [3,4] spectroscopy have also been reported for the
detection and imaging of cancer tissues. However, these devices are
bulky and not easily suitable for real-time intraoperative detection.

Moreover, imaging methods often result in blurred tumor borders,
making it challenging to accurately determine glioma lesion boundaries
and categorize gliomas.
The diagnosis and grading of brain gliomas require specimens ob-

tained through tumor resection surgery or biopsy surgery, followed by
an integrated histopathological and molecular pathological diagnosis to
determine tumor grade and stage. Histopathological analysis involves
microscopic observation of tissue-stained sections using stains such as
H&E stains. H&E staining can differentiate cell nuclei in blue-purple and
cytoplasm in pink, aiding in the distinction of different cell and tissue
structures. WHO CNS5 classifies gliomas into six types based on histo-
logical morphology [5], immunophenotype, molecular diagnosis, etc.
H&E staining is used to observe histological morphology in the report,
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allowing precise determination of tumor boundaries at the cellular level.
However, chemical staining is a time-consuming and complex process
that is susceptible to variability in manual operation, resulting in issues
such as weak image contrast and unclear tissue structures. Additionally,
it is irreversible, non-repeatable, and may lead to staining
contamination.
In recent years, deep learning has shown a wide range of applications

in the field of image processing, for example, stereo image segmentation
based on convolutional neural networks (CNN) [6], multi-level fusion,
and attention-guided CNN image dehazing methods [7], deep
learning-based face recognition algorithms [8], and cartoon image
pixelation [9]. Moreover, deep learning has demonstrated remarkable
performance in medical image processing [10–21]. Helong Yu et al.
proposed the TinyBERT-CNN fusion model for intent classification of
"Treatise on Febrile diseases" [22]. Tao Zhou et al. summarized the latest
deep learning-based image fusion methods [23]. Generative Adversarial
Networks (GANs) are a typical medical image generation network [21,
24–27], and Pix2Pix GAN is a variant form of conditional adversarial
networks. It utilizes the Unet structure as the generator and Patch GAN
as the discriminator, thereby enabling the generation of realistic images.
This network exhibits excellent realism in virtual staining of patholog-
ical tissues, making it challenging for even experienced pathologists to
distinguish [12].
Deep learning-based virtual staining approaches can be categorized

into two types: virtual staining of unstained tissues and transformations
between various histological stains. Mainstream virtual histological
staining utilizes spontaneous fluorescence images of label-free tissues as
network inputs. For instance, Rivenson et al. employed a generative
adversarial network to convert label-free images of human tissue sam-
ples into multiple stains, including H&E (salivary gland and thyroid),
Jones stain (kidney), and Masson’s trichrome (liver and lung) [12].
Yuzhu Li et al. employed neural networks to conduct virtual staining on
autopsy tissues. This virtual autopsy staining technique was capable of
producing artifact-free H&E staining even under severe autolysis and
cell death conditions [28]. Ming Y. Lu et al. introduced a
visual-linguistic foundation model called CONCH, which achieved
state-of-the-art performance in tissue pathology image classification,
segmentation, captioning, text-to-image, and image-to-text retrieval
tasks [29]. More sophisticated optical techniques have demonstrated

effectiveness in virtual staining of label-free tissues, such as two-photon
excitation microscopy (TPEF) [13], stimulated Raman scattering (SRS)
microscopy [14], reflective confocal microscopy (RCM) [15], quantita-
tive phase imaging (QPI) [30], ultraviolet photoacoustic microscopy
(UV-PAM) [16], and ultraviolet photoacoustic remote sensing micro-
scopy (UV-PARS) [31]. Furthermore, Yijie et al. combined virtual
staining of label-free tissues with a digital staining matrix, achieving a
diverse set of staining on the same tissue section [32]. The alternative
approach involved utilizing unsupervised training networks, like the
cycle generative adversarial network (CycleGAN [27,33]), to recon-
struct images of stained tissue in diverse staining styles. For instance, de
Haan et al. trained a deep neural network to convert H&E images of
human kidney samples into specific stains, including Jones silver, MT,
and PAS stains [34]. Levy et al. used an H&E stain of human liver tissue
to generate a virtual trichrome stain for investigating the staging of liver
fibrosis [17]. Additionally, there are endeavors to generate immuno-
histochemical (IHC) staining from H&E images for cancer diagnosis
[35].
Deep learning-based virtual staining methods allow for rapid and

accurate tissue virtual staining without the need for dyes or specialized
pathologists, which does not cause damage to the original tissues. These
methods can provide clinicians with quick diagnostic assistance in
clinical settings, offering more possibilities for disease diagnosis and
treatment. However, the accuracy of virtual staining relies on the rich-
ness of information in the input image. Consequently, numerous studies
leverage advanced optical setups or original tissue chemical processing
techniques to enhance the information of the input images. Hyper-
spectral imaging technology, which captures a continuous range of
spectral images, can differentiate healthy and diseased tissues based on
their unique light reflection and absorption patterns across various
wavelengths, thereby offering a viable virtual H&E staining approach.
This paper utilizes tunable spectral filters to capture hyperspectral

images of glioma tissues and based on deep learning methods, trains a
rapid virtual H&E staining model. The model is cost-effective with a
small volume of tunable spectral filters, and the high-spectral imaging
method is contamination-free and contactless, enabling convenient and
quick virtual H&E staining of gliomas. The collection of high-spectral
images through a microscope is depicted in Fig. 1a, followed by the
selection of specific wavelength images that are subsequently fed into

Fig. 1. Comparisons of staining processes: (a) The deep learning method employs a developed automatic slice scanning system to obtain high-spectral images of
glioma tissues. Data from seven wavelength channels are extracted and then fed into a pre-trained neural network for virtual staining. (b) The traditional H&E
staining process.
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the virtual staining network to generate virtual staining images. These
reconstructed virtual staining images exhibit comparable image quality
to the traditional H&E stained images shown in Fig. 1b, demonstrating
highly similar tissue structures and color characteristics.
In this paper, our main contributions are summarized as follows.

1. Deep learning and hyperspectral imaging are utilized to create vir-
tual H&E-stained images that closely resemble true H&E images,
reducing costs, time, and potential errors in the staining process
while minimizing damage to original tissue samples.

2. After evaluating different network structures, Unet has been selected
as the virtual staining neural network. Additionally, the combina-
tions of imaging wavelength are further investigated to achieve a
high accuracy and efficiency of the virtual H&E staining results.

3. A comprehensive software platform has been developed to seam-
lessly integrate CCD control, microscope control, and virtual H&E
staining technology. This system reduces manual labor and time
required for traditional staining while also ensuring accurate and
consistent results for pathologists and clinicians.

2. Materials and methods

2.1. Data acquisition

The glioma slices used in this study are sourced exclusively from the
First Affiliated Hospital of Wenzhou Medical University. The hyper-
spectral images of 10 glioma tissue sections are used as the data sets of
the neural network. Images are captured using an inverted microscope
(IX83, Olympus) equipped with a tunable bandpass filter (KURIOS-XL1,
Thorlabs). The microscope parameter “brightness” is consistently
configured to 4, with a fixed exposure time of 300 ms set for the CCD
(BioHD-C20, FluoCa). No additional processing is required for frozen
tissue sectioning. Hyperspectral images are captured in the spectral
range of 420–730 nm, with a 5 nm step, resulting in 63 spectral

channels. After obtaining hyperspectral microscopic imaging data,
standard H&E staining is performed on tissue sections and the slides are
sealed to ensure uniform staining of all sections. Following this pro-
cedure, H&E images are captured using an inverted microscope. The
image data is captured through a fully automated slide scanning system
and stored in TIF format.

2.2. Data preprocessing

This study employs a Pix2Pix supervised deep learning model to
achieve virtual staining, requiring precise registration between hyper-
spectral and H&E staining images. Due to the fact that hyperspectral
images of label-free tissue sections lack high contrast when viewed
under a microscope, it poses challenges in precise image registration.
Therefore, rigid registration methods are chosen to select corresponding
feature points between real H&E images and hyperspectral images with
the highest contrast at 570 nm. Then the rotation angle and translation
distance are calculated, and the registration matrix is applied to other
corresponding spectral data, completing image registration of hyper-
spectral images and H&E images.
After obtaining pairs of registered images, overlapping regions are

preserved and 7-channel spectral image data is extracted. The data is
then stacked into a single .npy file for easy use as input for model
training and testing. Before inputting the dataset into the neural
network, the data is randomly cropped to a size of 1024× 1024 and then
resized to 512 × 512 to increase cell quantity in the receptive field. Data
augmentation is achieved through rotation, flipping, and random erase.
The random erase is used to simulate large blank areas and ensures that
the model accurately predicts values in the blank regions. During
testing, the testing dataset is cropped into sizes of 1024 × 1024 with a
30 % overlap between each cropped image. After obtaining the model
output, the results are concatenated in the original sequence to facilitate
the restoration of the full-size images.

Fig. 2. The structure of the generator and the discriminator. The U-Net network includes 5 layers of encoders and decoders, which takes a 7-channel wavelength as
the input data and produces a corresponding 3-channel H&E staining result. This synthesized result is then input into the discriminator alongside real staining images
for classification. The discriminator is responsible for determining whether the generated image is real or fake.
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2.3. GAN architecture and training

The study uses a GAN architecture [36] for the deep learning model,
which includes a generator and a discriminator. The Unet generator and
discriminator structure are illustrated in Fig. 2. These two components
work together, learning from each other to improve over time, ulti-
mately creating a generator capable of producing highly convincing fake
images. The loss function of the generator is defined as:

Ɫ generator = L1{y,G(x)} + (1 − D(G(x)))2 + VGG{y,G(x)} (1)

Where x, y, G(.), and D(.) represent the hyperspectral data, real H&E
images, generator, and discriminator, respectively. The perceptual loss
(VGG Loss) [37] is used to enhance the fine details of the generated
images. Additionally, it is desired that the generated images have a
higher level of confusion in the discriminator, making it more likely to
misclassify the generated virtual staining as real staining images. Hence,

this loss is included as the latter part of the loss function.
The discriminator is equally crucial in the GAN network, and in this

paper, the patchGAN structure is selected as the discriminator. In the
GAN network, the discriminator is utilized to accurately distinguish
between real and virtual staining. The discriminator assigns a score of
0 to virtual staining outputs and a score of 1 to real staining outputs. To
minimize the loss for the discriminator, the loss function of the generator
is defined as:

Ɫdiscrimnator =D(G(x))2 + (1 − D(y))2 (2)

The generator of deep neural networks uses the Unet structure,
which consists of two parts: encoder (downsampling) and decoder
(upsampling). The encoder includes 4 downsampling blocks and 4
upsampling blocks, with concatenate connections connecting down-
sampling and upsampling. Each downsampling block consists of 3 con-
volutional layers, InstanceNorm normalization layers, and LeakyReLU
activation layers. In the upsampling part, transposed convolution

Fig. 3. Preprocessing of hyperspectral data includes the following steps: (a) Calculation of the mean and standard deviation of the spectral image at each wavelength.
(b) Generation of histograms for the top three wavelength channels through dimensionality reduction (PCA). (c) Manual selection of feature points for image
registration using feature-based image registration [40].
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(deconvolution) layers are used instead of simple upsampling for
upsampling. Each upsampling block also includes 3 convolutional
layers, InstanceNorm normalization layers, and LeakyReLU activation
layers. The final layer is a convolutional layer designed to transform the
multi-channel data into a size of batch 3 × 512 × 512. The skip con-
nections between the downsampling and upsampling parts of Unet allow
the network to preserve information from shallow layers, contributing to
better image reconstruction.
The various deep neural networks mentioned in the paper are all

trained for the same number of epochs (230 epochs). The convolutional
layers have 3 × 3 convolutional kernels. The same dataset is used for
training and testing across all networks.

2.4. Implementation details

All the deep learning neural network models in this paper are
implemented using Python 3.6 and PyTorch 1.10. The computations are
performed at the Sunway Supercomputing Center, Chinese Academy of
Sciences, utilizing an XEON 6248R (3.0 GHz, 24 cores, Intel Corpora-
tion) and a GeForce RTX 3090 GPU (NVIDIA Corporation). The network
is trained using a single GPU on the cluster for a total of 40 h, covering
230 epochs.

3. Results and discussion

3.1. Performance comparisons using various wavelength combinations

In this study, tumor sections of 10 glioma patients are collected, and
spectral images with a size of 5440 × 1648 pixels and corresponding
H&E staining results are collected. Finally, 627 pairs of data sets are
obtained through image registration. The hyperspectral dataset contains
a substantial amount of redundant information, necessitating dimen-
sionality reduction of the raw data [38]. Principal component analysis

(PCA) [39] is a commonly used dimensionality reduction technique,
specifically designed to transform high-dimensional spectral data into
low-dimensional data while preserving essential information as in
Fig. 3a–b. In Fig. 3c, corresponding feature point coordinates between
spectral images and true H&E images are identified, and a deformation
matrix is calculated to accurately align the images. Subsequently, the
registered image pairs undergo an identical cropping process, resulting
in a paired dataset.
Fig. 3 illustrates the preprocessing of the hyperspectral datasets.

Fig. 3a depicts the error band graph of the hyperspectral data, revealing
significant variations in grayscale intensity. Fig. 3b utilizes the PCA
method to reduce the dimensionality of data, obtaining statistical his-
tograms for the top three influential spectral wavelengths (465, 595, and
620 nm) and they deviate from previous studies (457, 517, and 645 nm)
[41,42] due to variations in tissue compositions. The wavelength dis-
tribution, which makes a significant contribution to hyperspectral data,
spans the high, medium, and low ranges. Therefore, in this study,
spectral images are captured from 420 nm to 730 nm with an interval of
50 nm. Among them, the 7-channel dataset is selected, which consists of
seven spectral image channels with wavelengths at 420, 470, 520, 570,
620, 670, and 720 nm. In addition, the peak of spectral data is located in
a region centered around a wavelength of 570 nm, and it is noteworthy
that the gray mean value of the spectral image at 570 nm attains its
maximum level. Hence, the label-free images captured at 570 nm serve
as a 1-channel dataset.
To quantitatively analyze the performance of different methods,

three evaluation metrics: PSNR (Peak Signal-to-Noise Ratio), SSIM
(Structural Similarity), and intersection over union (IOU) are adopted to
measure the reconstructed image quality. In Fig. 4a–c, comparisons of
SSIM (a), PSNR (b), and IOU (c) metrics are conducted to evaluate the
impact of 1-channel (red) and 7-channel inputs (blue) on virtual staining
results, wherein the 7-channel results exhibit a more concentrated dis-
tribution of SSIM, PSNR, and IOU with higher mean values than those of

Fig. 4. Comparisons of SSIM (a), PSNR (b), and IOU (c) metrics are conducted to evaluate the impact of 1-channel (red) and 7-channel inputs (blue) on virtual
staining results. The violin plots display metrics, including the mean, median, and histograms. (d) The influence of different channel inputs on the number of
generated cell nuclei [43,44] is examined through cell nucleus segmentation counting using the stardist library.
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the 1-channel results. Additionally, in Fig. 4d, the nuclear counts of both
are statistically quantified against ground truth, yielding slope P-values
via linear regression. The findings indicate that the 7-channel dataset
generated P-values closer to reality. The 7-channel virtual staining
neural network demonstrates clear superiority over the 1-channel vir-
tual staining neural network. This implies that a single wavelength, such
as 570 nm alone, cannot encompass all the required data information for
virtual staining, emphasizing the necessity of obtaining data from
multiple wavelengths. Figs. S1–S3 present a statistical analysis of the
virtual staining results, including nuclear area and nuclear distance.
Fig. S4 and Table S4 demonstrate the influence of image brightness at
different spectral wavelengths on the virtual staining neural network.
Utilizing the control variables method, the impacts of 7-channel

combinations on virtual staining results are investigated, and all vir-
tual staining networks are with the same network structures, identical
initial parameters, and 230 training epochs. The SSIM and PSNR in
Table 1 and Table S1 imply that 7-channel (420, 470, 520, 570, 620,

670, and 720 nm) virtual staining neural networks, which encompass a
broader range of wavelengths, are of superior performance than either
1-channel or 3-channel virtual staining neural networks. Consequently,
all subsequent analyses and experiments in this paper utilize data of the
7-channel wavelength (420, 470, 520, 570, 620, 670, and 720 nm) as
input vectors to the virtual staining neural network.

3.2. Comparisons of methods with various generator structures

The GANs involve the iterative learning and refinement of the
generator and discriminator to achieve a realistic output from the
generator. However, due to the complexity of the generator task and the
numerous parameters in the generator structure, training the generator
is often challenging. Therefore, to investigate the influence of generator
structures on the virtual staining results, six deep learning (Crossnet
[45], D-LinkNet [46], HRnet [47], Resnet [48], Unet [49], and Unet3D
[50]) are models trained on an identical 7-channel spectral dataset for
the same number of epochs as in Tables 2 and 3.
The qualitative and quantitative comparisons of virtual staining re-

sults generated by six network models are compared in Figs. 5 and 6 and
Tables S2–S3. The Crossnet, HRnet, and Unet show relatively concen-
trated SSIM values for the test sets, with mean values centered around
0.7731 and variances of approximately 0.08 in Fig. 5a. Fig. 5b–c depict
that Unet exhibits the shortest training and testing time, with a training
process taking half the time of Unet3D and a testing process requiring 1/
7 the time of HRnet. The results indicate that these virtual staining
methods effectively convert high-spectral images of glioma tissue into
high-fidelity virtual H&E images, accurately replicating image color,
nuclear distribution, and nuclear morphology as shown in Fig. 6. After

Table 1
Performance of several virtual staining neural networks with varying combi-
nations of spectral information on the test datasets.

wavelength combinations SSIM Std PSNR Std

570 0.7366 0.1106 22.5880 2.4796
520,570,620 0.7711 0.0893 23.1124 2.2164
420,570,720 0.7454 0.1115 22.9146 2.5935
420,470 0.7114 0.1459 22.0702 2.8708
670,720 0.7276 0.1021 22.0702 2.6049
420,520,620,720 0.7561 0.1084 22.9424 2.3357
420,470,520,570,620,670,720 0.7731 0.0867 23.3120 2.2626

Fig. 5. Comparisons of the performance and execution time for six deep learning models: (a) The SSIM of the test results and real H&E images. (b) Cumulative
training time with the same epochs and (c) cumulative testing time.
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Fig. 6. Qualitative analysis of the virtual staining results generated by different models. The 1st column illustrates hyperspectral images (570 nm), which consist of 7
spectral channels (420,470,520,570,620,670,720 nm). The 2nd-7th columns demonstrate the virtual staining results generated by the CrossNet, D-LinkNet, HRnet,
ResNet, Unet, and Unet3D, respectively. The 8th column exhibits corresponding true H&E image pairs.

Fig. 7. The bottom section displays enlarged result comparisons in the virtual staining WSI (green box) and real H&E WSI (blue box). Fig.a1 and Fig.b1 correspond to
the black insets in the virtual staining WSI, and Fig.a2 and Fig.b2 correspond to the black insets in the real H&E WSI.

R. Zhu et al.
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comprehensive consideration of training and testing time, reconstructed
image quality, network complexity, and other aspects, the Unet struc-
ture is finally selected as the generator structure in this paper.

3.3. Comprehensive software platform

The automation software, for virtual staining of whole-slide imaging
(WSI) tissue sections, has been developed by integrating virtual staining
functionality with hardware components, including a microscope, CCD
camera, and tunable optical filters (demonstration video in SI). As
shown in Fig. 7, a comparative analysis is conducted between full-size
virtual staining images and real H&E staining images. Because the vir-
tual staining neural network takes an input of a certain size, thus large-
scale virtual staining images require cropping the input images into
small patches (1024 × 1024) and then stitching virtual staining results
together. To avoid artifacts during the image stitching process, 30 %
overlaps are preserved between adjacent input patches. The virtual
staining results of the overlapping regions are similar, and image fusion
can reduce the edge artifacts. It can be observed that the full-size virtual
staining results exhibit similar structural features (with SSIM above 0.7)
and consistent staining patterns with traditional H&E staining, albeit
with some inconsistent results. This indicates the success of our auto-
mated WSI staining system, showcasing staining results comparable to
traditional methods, and potentially enabling faster clinical diagnostic
capabilities. Additionally, it facilitates the prediction of methods.
In the virtual staining process of large-scale images, inevitable arti-

facts are observed, especially in blank background regions, manifesting
as noticeable color differences. Additionally, foreign objects and over-
lapping tissue regions in the slide may lead to inconsistent results
compared to the actual situation. To address the issue, enhancing the
dataset with more instances of these special scenarios is suggested, and
color normalization methods are hoped to achieve consistency in the
training dataset [51,52].

4. Conclusion

This paper investigates the feasibility of converting HSI data into
virtual H&E staining images through a combination of deep learning
method and hyperspectral image technique. Multiple virtual staining
neural networks are trained using various combinations of hyperspectral
data, and experiments show that a virtual staining neural network
trained with a wider wavelength range facilitates better performance.
Wherein, the virtual neural network, which is trained with wavelength
combination (420, 470, 520, 570, 620, 670, and 720 nm), achieves
optimal SSIM of 0.7731 and PSNR of 23.3120. By quantitatively
comparing the SSIM, PSNR, IOU, and training/inference time of six
virtual staining neural networks, the Unet, characterized by its simple
deep and shallow feature connection structure, achieves relatively high
accuracy while ensuring considerable processing efficiency. Moreover,
using a laptop (Intel i5-1135G7, NVIDIA GeForce MX450), it takes only
30 s to finish a 5440 × 3648-pixel virtual staining image (field-of-view
~ 114.31 mm2), i.e. the imaging speed of 3.81 mm2/s.
This study presents a virtual stainingmethod using spectral images of

tissue slices, which allows for quick virtual H&E staining results without
damaging the tissues while maintaining color normalization, and pro-
vides a new auxiliary tool for physicians in clinical diagnosis and
treatment. This novel deep learning-based method exhibits high pro-
fessionalism, and the developed automated slide scanning virtual
staining system, capable of automatically collecting tissue spectral in-
formation to infer full-size virtual staining images, significantly reduces
the complexity of use, making it accessible to individuals without
specialized knowledge. This virtual staining method has the potential to
further evolve into a collection of various chemical stains, possibly
becoming a new assistant for clinical diagnosis by doctors.
However, the generator structure used is relatively simple, and it

should be customized with novel architectural designs to improve the

overall efficiency and effectiveness of the generator model [24–26].
Additionally, the available clinical data is limited and may not encom-
pass all cases, thereby restricting the generalization ability. Further-
more, the assessment of the virtual H&E staining results conducted by
the pathologists would further promote the accuracy and potential
clinical applications. In the future, improving the current methodology
would involve collecting more unified tissue datasets, customizing a
high-performance generator framework, introducing richer evaluation
factors, and conducting research on transitioning from H&E staining to
multiplex staining.

Code availability

The virtual H&E staining pytorch code of glioma hyperspectral im-
ages used in this study can be found on GitHub at https://github.
com/Ansherp/GVS.
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